Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Res Hepatol Gastroenterol ; 47(7): 102165, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37330005

RESUMO

BACKGROUND: The effects of postoperative adjuvant therapy for high-risk recurrent hepatocellular carcinoma (HCC) in immunotherapy are still under investigation. This study evaluated the preventive effects and safety of postoperative adjuvant therapy, including atezolizumab, and bevacizumab, against the early recurrence of HCC with high-risk factors. METHODS: The complete data of HCC patients who underwent radical hepatectomy with or without postoperative adjuvant therapy after two-year follow-up were analyzed retrospectively. The patients were divided into high-risk or low-risk groups based on HCC pathological characteristics. High-risk recurrence patients were divided into postoperative adjuvant treatment and control groups. Due to the difference in approaches in postoperative adjuvant therapies, they were divided into transarterial chemoembolization (TACE), atezolizumab, and bevacizumab (T + A), and combination (TACE+T + A) groups. The two-year recurrence-free survival rate (RFS), overall survival rate (OS), and associated factors were analyzed. RESULTS: The RFS in the high-risk group was significantly lower than that in the low-risk group (P = 0.0029), and the two-year RFS in the postoperative adjuvant treatment group was significantly higher than that in the control group (P = 0.040). No severe complications were observed in those who received atezolizumab and bevacizumab or other therapy. CONCLUSION: Postoperative adjuvant therapy was related to two-year RFS. TACE, T + A, and the combination of these two approaches were comparable in reducing the early recurrence of HCC without severe complications.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/cirurgia , Bevacizumab/uso terapêutico , Estudos Retrospectivos , Quimioembolização Terapêutica/efeitos adversos , Hepatectomia
2.
Cell Mol Gastroenterol Hepatol ; 16(3): 385-410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37245564

RESUMO

BACKGROUND & AIMS: The machinery that prevents colorectal cancer liver metastasis (CRLM) in the context of liver regeneration (LR) remains elusive. Ceramide (CER) is a potent anti-cancer lipid involved in intercellular interaction. Here, we investigated the role of CER metabolism in mediating the interaction between hepatocytes and metastatic colorectal cancer (CRC) cells to regulate CRLM in the context of LR. METHODS: Mice were intrasplenically injected with CRC cells. LR was induced by 2/3 partial hepatectomy (PH) to mimic the CRLM in the context of LR. The alteration of corresponding CER-metabolizing genes was examined. The biological roles of CER metabolism in vitro and in vivo were examined by performing a series of functional experiments. RESULTS: Induction of LR augmented apoptosis but promoted matrix metalloproteinase 2 (MMP2) expression and epithelial-mesenchymal transition (EMT) to increase the invasiveness of metastatic CRC cells, resulting in aggressive CRLM. Up-regulation of sphingomyelin phosphodiesterase 3 (SMPD3) was determined in the regenerating hepatocytes after LR induction and persisted in the CRLM-adjacent hepatocytes after CRLM formation. Hepatic Smpd3 knockdown was found to further promote CRLM in the context of LR by abolishing mitochondrial apoptosis and augmenting the invasiveness in metastatic CRC cells by up-regulating MMP2 and EMT through promoting the nuclear translocation of ß-catenin. Mechanistically, we found that hepatic SMPD3 controlled the generation of exosomal CER in the regenerating hepatocytes and the CRLM-adjacent hepatocytes. The SMPD3-produced exosomal CER critically conducted the intercellular transfer of CER from the hepatocytes to metastatic CRC cells and impeded CRLM by inducing mitochondrial apoptosis and restricting the invasiveness in metastatic CRC cells. The administration of nanoliposomal CER was found to suppress CRLM in the context of LR substantially. CONCLUSIONS: SMPD3-produced exosomal CER constitutes a critical anti-CRLM mechanism in LR to impede CRLM, offering the promise of using CER as a therapeutic agent to prevent the recurrence of CRLM after PH.


Assuntos
Neoplasias Colorretais , Exossomos , Neoplasias Hepáticas , Camundongos , Animais , Metaloproteinase 2 da Matriz , Regeneração Hepática , Esfingomielina Fosfodiesterase , Ceramidas , Neoplasias Colorretais/genética , Neoplasias Hepáticas/metabolismo
3.
Hepatobiliary Surg Nutr ; 12(1): 3-19, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36860242

RESUMO

Background: Lipid dysregulation plays a fundamental role in nonalcoholic steatohepatitis (NASH), which is an emerging critical risk factor that aggravates hepatic ischemia/reperfusion (I/R) injury. However, the specific lipids that mediate the aggressive I/R injury in NASH livers have not yet been identified. Methods: The mouse model of hepatic I/R injury on NASH was established on C56B/6J mice by first feeding the mice with a Western-style diet to induce NASH, then the NASH mice were subjected to surgical procedures to induce hepatic I/R injury. Untargeted lipidomics were performed to determine hepatic lipids in NASH livers with I/R injury through ultra-high performance liquid chromatography coupled with mass spectrometry. The pathology associated with the dysregulated lipids was examined. Results: Lipidomics analyses identified cardiolipins (CL) and sphingolipids (SL), including ceramides (CER), glycosphingolipids, sphingosines, and sphingomyelins, as the most relevant lipid classes that characterized the lipid dysregulation in NASH livers with I/R injury. CER were increased in normal livers with I/R injury, and the I/R-induced increase of CER was further augmented in NASH livers. Metabolic pathway analysis revealed that the enzymes involved in the synthesis and degradation of CER were highly upregulated in NASH livers with I/R injury, including serine palmitoyltransferase 3 (Sptlc3), ceramide synthase 2 (Cers2), neutral sphingomyelinase 2 (Smpd3), and glucosylceramidase beta 2 (Gba2) that produced CER, and alkaline ceramidase 2 (Acer2), alkaline ceramidase 3 (Acer3), sphingosine kinase 1 (Sphk1), sphingosine-1-phosphate lyase (Sgpl1), and sphingosine-1-phosphate phosphatase 1 (Sgpp1) that catalyzed the degradation of CER. CL were not affected by I/R challenge in normal livers, but CL was dramatically reduced in NASH livers with I/R injury. Consistently, metabolic pathway analyses revealed that the enzymes catalyzing the generation of CL were downregulated in NASH-I/R injury, including cardiolipin synthase (Crls1) and tafazzin (Taz). Notably, the I/R-induced oxidative stress and cell death were found to be aggravated in NASH livers, which were possibly mediated by the reduction of CL and accumulation of CER. Conclusions: The I/R-induced dysregulation of CL and SL were critically rewired by NASH, which might potentially mediate the aggressive I/R injury in NASH livers.

4.
Free Radic Biol Med ; 159: 136-149, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738398

RESUMO

BACKGROUND: Nonalcoholic fatty liver (NAFL) is emerging as a leading risk factor of hepatic ischemia/reperfusion (I/R) injury lacking of effective therapy. Lipid dyshomeostasis has been implicated in the hepatopathy of NAFL. Herein, we investigate the bioactive lipids that critically regulate I/R injury in NAFL. METHODS: Lipidomics were performed to identify dysregulated lipids in mouse and human NAFL with I/R injury. The alteration of corresponding lipid-metabolizing genes was examined. The effects of the dysregulated lipid metabolism on I/R injury in NAFL were evaluated in mice and primary hepatocytes. RESULTS: Sphingolipid metabolic pathways responsible for the generation of sphingosine-1-phosphate (S1P) were uncovered to be substantially activated by I/R in mouse NAFL. Sphingosine kinase 1 (Sphk1) was found to be essential for hepatic S1P generation in response to I/R in hepatocytes of NAFL mice. Sphk1 knockdown inhibited the hepatic S1P rise while accumulating ceramides in hepatocytes of NAFL mice, leading to aggressive hepatic I/R injury with upregulation of oxidative stress and increase of reactive oxygen species (ROS). In contrast, administration of exogenous S1P protected hepatocytes of NAFL mice from hepatic I/R injury. Clinical study revealed a significant activation of S1P generation by I/R in liver specimens of NAFL patients. In vitro studies on the L02 human hepatocytes consolidated that inhibiting the generation of S1P by knocking down SPHK1 exaggerated I/R-induced damage and oxidative stress in human hepatocytes of NAFL. CONCLUSIONS: Generation of S1P by SPHK1 is important for protecting NAFL from I/R injury, which may serve as therapeutic targets for hepatic I/R injury in NAFL.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Traumatismo por Reperfusão , Animais , Hepatócitos/metabolismo , Humanos , Isquemia , Lisofosfolipídeos , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/genética , Transdução de Sinais , Esfingosina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...